
DiscoDB Documentation
Release

Disco Project

June 17, 2017





Contents

1 Install 3

2 Example 5

3 Notes 7

4 Python API 9

5 See Also 11

i



ii



DiscoDB Documentation, Release

discodb is comprised of a low-level data structure implemented in C, and a high-level discodb.DiscoDB class
which exposes a dict-like interface for using the low-level data structure from Python. In contrast to Python’s builtin
dict object, DiscoDB can handle tens of millions of key-value pairs without consuming gigabytes of memory.

In addition to basic key-value mappings, DiscoDB supports evaluation of Boolean queries expressed in Conjunctive
Normal Form (see discodb.Q below). All queries are evaluated lazily using iterators, so you can handle gigabytes
of data in Python with ease.

DiscoDBs are persistent, which means that once created in memory, they can be easily compressed, serialized and
written to a file. The benefit of this is that after they have been persisted, instantiating them from disk and key lookups
are lightning-fast operations, thanks to memory mapping.

DiscoDBs are also immutable, which means that once they are created, they cannot be modified. A benefit of im-
mutability is that the full key-space is known when DiscoDB is built, which makes it possible to use perfect hashing
for fast O(1) key lookups. Specifically, DiscoDB relies on the CMPH library for building minimal perfect hash func-
tions.

DiscoDB compresses values first by replacing duplicate entries with references to a singe unique entry and then by
compressing unique entries with a fast compression algorithm based on Huffman Coding. The main benefit of this
approach is that each value can be random accessed efficiently while achieving reasonable compression ratios, thanks
to statistics collected from all the data. This means that you can have lots of redundancy, e.g. common prefixes, in
your values without having to worry about space consumption.

The format of a DiscoDB file essentially looks like this:

The benefits of these properties are realized when you need repeated, random-access to data, especially when the
dataset is too large to fit in memory at once. DiscoDBs are a key component in Disco’s builtin distributed indexing
system, discodex.

Contents 1

http://en.wikipedia.org/wiki/Conjunctive_normal_form
http://en.wikipedia.org/wiki/Conjunctive_normal_form
http://en.wikipedia.org/wiki/Persistent_data_structure
http://en.wikipedia.org/wiki/Memory-mapped_file
http://en.wikipedia.org/wiki/Immutable_object
http://en.wikipedia.org/wiki/Perfect_hash_function
http://cmph.sourceforge.net/
http://en.wikipedia.org/wiki/Huffman_coding
http://github.com/discoproject/discodex


DiscoDB Documentation, Release

2 Contents



CHAPTER 1

Install

DiscoDB does not depend on Disco in any way, although it is a core component in discodex. You can use it without
Disco as a general-purpose scalable, immutable datastructure for Python. To install only DiscoDB without rest of
Disco, clone Disco, and run:

make install-discodb

or if you just want to build it locally:

cd contrib/discodb
python setup.py build

DiscoDB requires CMPH library v0.9 or newer (libcmph-dev in Debian).

3

http://github.com/discoproject/discodex
http://cmph.sourceforge.net/


DiscoDB Documentation, Release

4 Chapter 1. Install



CHAPTER 2

Example

Here is a simple example that builds a simple discodb and queries it:

from discodb import DiscoDB, Q

data = {'mammals': ['cow', 'dog', 'cat', 'whale'],
'pets': ['dog', 'cat', 'goldfish'],
'aquatic': ['goldfish', 'whale']}

db = DiscoDB(data) # create an immutable discodb object

print list(db.keys()) # => mammals, aquatic, pets
print list(db['pets']) # => dog, cat, goldfish
print list(db.query(Q.parse('mammals & aquatic'))) # => whale
print list(db.query(Q.parse('pets & ~aquatic'))) # => dog, cat
print list(db.query(Q.parse('pets | aquatic'))) # => dog, cat, whale, goldfish

db.dump(file('animals.db', 'w')) # dump discodb to a file

For more detailed information on querying, see discodb.query.

5



DiscoDB Documentation, Release

6 Chapter 2. Example



CHAPTER 3

Notes

• DiscoDB stores only one copy of each unique value. Thus using the same value multiple times is very cheap.
Applications should utilize this feature to maximize space and time efficiency.

• DiscoDB sorts key-value pairs internally, so no pre-sorting is needed. You can request DiscoDB to remove
duplicate key-value pairs automatically by setting unique_items=True in the DiscoDB constructor.

• DiscoDB does not compress values which are smaller than four bytes. DiscoDB may also decide to dis-
able compression if it is not likely to be beneficial. This doesn’t affect in DiscoDB behavior in any
way. You can disable compression explicitly, e.g. if your values are already compressed, by setting
disable_compression=True in the DiscoDB constructor.

• Value lists can be empty, in which case DiscoDB becomes an efficient set data structure.

• Keys and values can be arbitrary byte sequences or strings (see size limitations below). For instance, you can
save a serialized DiscoDB, as produced by discodb.DiscoDB.dumps(), in another DiscoDB to build a
tree of DiscoDBs!

• If any of the keys contains duplicate values, the whole DiscoDB is tagged to contain multisets. In the multiset
mode discodb.DiscoDB.query() is not available, as it is not clear currently how duplicate values should
be handled in queries. However, looking up a single key works as usual, so applications can freely utilize the
multiset feature (which is very efficient, as noted above) if complex queries are not needed.

• A single DiscoDB object has the following limitations:

– Maximum number of keys, 232

– Maximum number of unique values, 232

– Maximum number of values, 264

– Maximum size of a key/value, 232 bytes (4G)

– Maximum size of a DiscoDB object, 264 bytes

In many cases it makes sense to have several (distributed) small or medium-size DiscoDBs with millions of
keys at most, as created by discodex, instead of having a single DiscoDB with hundreds of millions of keys
and values, although it is technically possible. Run your own benchmarks to find the optimal size for your
application.

7

http://en.wikipedia.org/wiki/Multiset
http://github.com/discoproject/discodex


DiscoDB Documentation, Release

8 Chapter 3. Notes



CHAPTER 4

Python API

9



DiscoDB Documentation, Release

10 Chapter 4. Python API



CHAPTER 5

See Also

11


	Install
	Example
	Notes
	Python API
	See Also

