

discodb – An efficient, immutable, persistent mapping object

discodb is comprised of a low-level data structure implemented in C,
and a high-level discodb.DiscoDB class which exposes a dict-like
interface for using the low-level data structure from Python. In contrast to
Python’s builtin dict object, DiscoDB can handle tens of millions of
key-value pairs without consuming gigabytes of memory.

In addition to basic key-value mappings, DiscoDB supports evaluation of
Boolean queries expressed in Conjunctive Normal Form [http://en.wikipedia.org/wiki/Conjunctive_normal_form] (see
discodb.Q below). All queries are evaluated lazily using iterators,
so you can handle gigabytes of data in Python with ease.

DiscoDBs are persistent [http://en.wikipedia.org/wiki/Persistent_data_structure], which means that once created in memory,
they can be easily compressed, serialized and written to a file. The benefit
of this is that after they have been persisted, instantiating them from disk
and key lookups are lightning-fast operations, thanks to memory mapping [http://en.wikipedia.org/wiki/Memory-mapped_file].

DiscoDBs are also immutable [http://en.wikipedia.org/wiki/Immutable_object], which means that once they are created,
they cannot be modified. A benefit of immutability is that the full key-space
is known when DiscoDB is built, which makes it possible to use perfect
hashing [http://en.wikipedia.org/wiki/Perfect_hash_function] for fast
O(1) key lookups. Specifically, DiscoDB relies on the CMPH library [http://cmph.sourceforge.net/] for building minimal perfect hash functions.

DiscoDB compresses values first by replacing duplicate entries with references
to a singe unique entry and then by compressing unique entries with a fast
compression algorithm based on Huffman Coding [http://en.wikipedia.org/wiki/Huffman_coding]. The main benefit of this
approach is that each value can be random accessed efficiently while achieving
reasonable compression ratios, thanks to statistics collected from all the data.
This means that you can have lots of redundancy, e.g. common prefixes, in your
values without having to worry about space consumption.

The format of a DiscoDB file essentially looks like this:

[image: _images/discodb_format.png]
The benefits of these properties are realized when you need repeated,
random-access to data, especially when the dataset is too large to fit in
memory at once. DiscoDBs are a key component in Disco’s builtin distributed
indexing system, discodex [http://github.com/discoproject/discodex].

Install

DiscoDB does not depend on Disco in any way, although it is a core
component in discodex [http://github.com/discoproject/discodex]. You can use it without Disco as a general-purpose
scalable, immutable datastructure for Python. To install only DiscoDB without
rest of Disco, clone Disco, and run:

make install-discodb

or if you just want to build it locally:

cd contrib/discodb
python setup.py build

DiscoDB requires CMPH library v0.9 or newer [http://cmph.sourceforge.net/] (libcmph-dev in Debian).

Example

Here is a simple example that builds a simple discodb and queries it:

from discodb import DiscoDB, Q

data = {'mammals': ['cow', 'dog', 'cat', 'whale'],
 'pets': ['dog', 'cat', 'goldfish'],
 'aquatic': ['goldfish', 'whale']}

db = DiscoDB(data) # create an immutable discodb object

print list(db.keys()) # => mammals, aquatic, pets
print list(db['pets']) # => dog, cat, goldfish
print list(db.query(Q.parse('mammals & aquatic'))) # => whale
print list(db.query(Q.parse('pets & ~aquatic'))) # => dog, cat
print list(db.query(Q.parse('pets | aquatic'))) # => dog, cat, whale, goldfish

db.dump(file('animals.db', 'w')) # dump discodb to a file

For more detailed information on querying, see discodb.query.

Notes

	DiscoDB stores only one copy of each unique value. Thus using the same
value multiple times is very cheap. Applications should utilize this feature
to maximize space and time efficiency.

	DiscoDB sorts key-value pairs internally, so no pre-sorting is needed. You can
request DiscoDB to remove duplicate key-value pairs automatically by setting
unique_items=True in the DiscoDB constructor.

	DiscoDB does not compress values which are smaller than four bytes. DiscoDB may
also decide to disable compression if it is not likely to be beneficial.
This doesn’t affect in DiscoDB behavior in any way. You can
disable compression explicitly, e.g. if your values are already compressed, by
setting disable_compression=True in the DiscoDB constructor.

	Value lists can be empty, in which case DiscoDB becomes an efficient set
data structure.

	Keys and values can be arbitrary byte sequences or strings (see size limitations
below). For instance, you can save a serialized DiscoDB, as produced by
discodb.DiscoDB.dumps(), in another DiscoDB to build a tree of
DiscoDBs!

	If any of the keys contains duplicate values, the whole DiscoDB is tagged to
contain multisets [http://en.wikipedia.org/wiki/Multiset]. In the multiset
mode discodb.DiscoDB.query() is not available, as it is not clear
currently how duplicate values should be handled in queries. However, looking up a
single key works as usual, so applications can freely utilize the multiset
feature (which is very efficient, as noted above) if complex queries are not needed.

	
	A single DiscoDB object has the following limitations:

	
	Maximum number of keys, 232

	Maximum number of unique values, 232

	Maximum number of values, 264

	Maximum size of a key/value, 232 bytes (4G)

	Maximum size of a DiscoDB object, 264 bytes

In many cases it makes sense to have several (distributed) small or
medium-size DiscoDBs with millions of keys at most, as created by
discodex [http://github.com/discoproject/discodex], instead of having a single DiscoDB with hundreds
of millions of keys and values, although it is technically possible.
Run your own benchmarks to find the optimal size for your application.

Python API

See Also

Index

 _static/navigation.png

nav.xhtml

 Table of Contents

 		discodb – An efficient, immutable, persistent mapping object

_images/discodb_format.png
discodb format
designed for ightning fast random-access

keys -> int ids
al porcect hashing)

key id -> [value ids]
(de1ca-encoded)

lookup key id/offset

retrieve values iterator

key ids -> keys
value ids -> values

_static/file.png

_static/plus.png

_static/ajax-loader.gif

_static/contents.png

_static/comment-bright.png

_static/up-pressed.png

_static/comment.png

_static/down.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

